MCUNet: Model Compression and Tiny On-Device Learning

Song Han
MIT
songhan.mit.edu
mcunet.mit.edu
MCUNet: Tiny Deep Learning on IoT Devices

- Billions of IoT devices around the world based on microcontrollers (MCU).
- Low-cost ($1-2), low-power, small, almost everywhere in our lives.
- AI on MCU is hard: No DRAM. No OS. Extreme memory constraint.
- Existing work optimize for #parameters, but #activation is the real bottleneck.
- MCUNet: first to achieve >70% ImageNet top1 accuracy on a microcontroller.
- Cloud AI: ResNet; Mobile AI: MobileNet; Tiny AI: MCUNet. Demo.

Results

<table>
<thead>
<tr>
<th>Approach</th>
<th>ImageNet Top1</th>
<th>35%</th>
<th>45%</th>
<th>55%</th>
<th>65%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (MbV2+CMSIS)</td>
<td></td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TinyEngine (Prune Redundant Ops)</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TinyNAS (Prune Design Space)</td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TinyNAS+TinyEngine</td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Efficient Neural Architecture

Efficient Compiler / Runtime

MCUNet, NeurIPS’20
MCUNet-v2: Memory-Efficient Patch-Based Inference

Problem: Imbalanced memory usage → activation bottleneck

(a) Per-layer computation (executing first conv)
(b) Per-patch computation (executing first patch)

Demo: https://youtu.be/F4XKn0iDfxg

MCUNet V2, NeurIPS'21
MCUNet-v3: On-Device Training Under 256KB Memory

- AI systems need to adapt to new sensory data for customization and continual learning.
- Cloud-based learning leads to privacy issue and high cost.
- However, training is more expensive than inference due to back-propagation, making it hard to fit IoT devices (such as MCU only has 256KB SRAM).
- Idea: sparse layer / sparse tensor update + quantization-aware scaling on real quantized graph as opposed to fake quantized graph + tiny training engine: >1000x memory reduction.
- Demo